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Abstract

Epidemiological investigations suggest a link between exposure to indoor air chemicals and 

adverse health effects. Consumer products contain reactive chemicals which can form secondary 

pollutants which may contribute to these effects. The reaction of limonene and ozone is a well 

characterized example of this type of indoor air chemistry. The studies described here characterize 

an in vitro model using an epithelial cell line (A549) or differentiated epithelial tissue 

(MucilAir™). The model is used to investigate adverse effects following exposure to combinations 

of limonene and ozone. In A549 cells, exposure to both the parent compounds and reaction 

products resulted in alterations in inflammatory cytokine production. A one hour exposure to 

limonene + ozone resulted in decreased proliferation when compared to cells exposed to limonene 

alone. Repeated dose exposures of limonene or limonene + ozone were conducted on MucilAir™ 

tissue. No change in proliferation was observed but increases in cytokine production were 

observed for both the parent compounds and reaction products. Factors such as exposure duration, 

chemical concentration, and sampling time point were identified to influence result outcome. 

These findings suggest that exposure to reaction products may produce more severe effects 

compared to the parent compound.
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1. Introduction

Exposure to the indoor air environment has the potential for a wide range of effects on 

human health and it has been estimated that indoor air quality-related health issues cost 
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businesses $20–70 billion annually due to lost productivity, decreased performance, and sick 

absences (Mendell et al., 2002). Investigations have ascribed these effects (Arif and Shah, 

2007; Jang et al., 2007), in part, to volatile organic compounds (VOCs) emitted from 

building materials and furnishings and application of chemicals (paints, cleaners, pesticides, 

glues and adhesives). (Singer et al., 2006; Weschler, 2004). Research has associated VOC 

exposure with allergic airway inflammation, airway hyperresponsiveness, asthma, and loss 

of pulmonary function in animals and/or humans (Arif and Shah, 2007; Jang et al., 2007; 

Yoon et al., 2010; Bonisch et al., 2012). In addition, the secondary pollutants resulting from 

reactive indoor air chemistry (e.g. ozonolysis of VOCs) may also be responsible for some of 

the health effects associated with indoor air exposures. Consumer cleaning products and air 

fresheners contain large amounts of VOCs which can react with OH• (hydroxyl radicals), 

ozone, and/or NO3• (nitrate radicals) to form secondary oxidation products or secondary 

pollutants not detected with conventional sampling methods. These secondary pollutants 

include oxygenated organic chemicals, such as aldehydes, ketones, carboxylic acids and 

dicarbonyls (Forester et al., 2007; Ham et al., 2006; Harrison et al., 2007; Wells, 2005) 

which can be formed into thousands of chemical compounds. The potential toxicity of these 

secondary pollutants, either individually or as mixtures, is poorly understood and because of 

the lack of research in this area, associations with adverse health effects have yet to be 

made. Although many of these secondary pollutants have been observed from simulated 

indoor air chemistry, they are not routinely detected with conventional sampling methods 

which may lead to inaccurate exposure assessments of indoor environments.

The respiratory tract plays a protective role against xenobiotics and invading 

microorganisms and also plays a significant role in immune surveillance. Epithelial cells are 

a major contact point for atmospheric pollutants since they are needed for gaseous exchange, 

mucous secretion, and protection. Disorders of the respiratory tract following chemical 

exposure include: disruption of the barrier functions including the mucociliary clearance, 

irritation, coughing, acute injury, altered gas exchange and decreased immune function. Due 

to the complexity of chemical-respiratory tract interactions, several in vitro methods using 

relevant airway cells, or tissues and implementation of target specific endpoints have been 

developed for toxicity assessment (Lambre et al., 1996). However, a lack of standardization 

among methods has made data interpretation and extrapolation challenging (Ritter et al., 

2001). Complicating factors include: lack of complexity, differences in exposure method, 

chemical exposure concentration, flow and duration of exposure, experimental model and 

endpoints selected for analysis (Bakand et al., 2005). More primitive exposure systems 

include the addition of the chemical or compound of interest directly to the media in a 

closed flask (static environment). While the main benefits of these types of exposure studies 

include reduced costs and large sample number, they do have limited sensitivity and provide 

an unrealistic environment due to chemical-media interactions. (Fischader et al., 2008). 

Recent advances in the field include the development of air/cell interface exposure systems 

such as those produced by companies including Vitrocell® Systems (Waldkirch, Germany) 

and Cultex Laboratories (Hannover, Germany). These exposure systems allow for direct 

exposure (flowing system) of the apical surface of the cell line or tissue with the aerosolized 

compound of interest, eliminating the potential for chemical/media interactions (Anderson et 

al., 2010; Persoz et al., 2010; Schmalz et al., 2011). While these systems are highly efficient 
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and sensitive they are often expensive and most do not easily allow for dose response 

studies.

In addition to exposure system, selection of the experimental model is another potential for 

variability. Different models can be utilized depending on the health effect of interest 

(Verstraelen et al., 2008a). Inflammation and irritation of the lower respiratory tract is often 

evaluated in bronchial epithelial cells (NHBE, BEAS-2B) (Pichavant et al., 2005; Persoz et 

al., 2012) or alveolar epithelial cells (A549) (Krakauer, 2000) while respiratory sensitization 

is often evaluated in monocyte/macrophage (Mono-Mac-6, THP-1) cell lines (Elms et al., 

2001; Verstraelen et al., 2008b). Other advances in the field also include the use of primary 

cell lines and the development of highly differentiated three dimensional human airway 

tissue samples, such as (EpiAirway™ Tissue Model (Mattek, Ashland, MA) and MucilAir™ 

Epithelix (Geneva, Switzerland). To a lesser extent, cellular co-cultures consisting of 

epithelial cells, human blood monocyte-derived macrophages and dendritic cells have been 

used for investigational purposes (Lehmann et al., 2011). The selection of relevant endpoints 

is often based on the cell line or tissue selected for use and include but are not limited to: 

inflammatory cytokines [Interleukin 8 (IL-8), Interleukin 6 (IL-6), monocyte 

chemoattractant protein 1 (MCP-1)], cell proliferation, cytotoxicity (measurements of 

metabolic activity and cell membrane integrity), oxidative stress [glutathione (GSH), 

cellular markers (HO-1, SOD-1, GSTP1, PTGS2, DUSP1)], reactive oxygen species (ROS), 

signaling pathways (NF-kB and MAP kinase), and genotoxicity (DNA damage). Differences 

in cell culture technique, use of cell stimulation with agents such as tumor necrosis factor 

alpha (THF-α) as surrogates for cellular signaling, and time point for experimental sampling 

are also potential sources of variability.

The majority of research in the field of indoor air has focused on the parent compounds, or 

the chemicals most widely recognized as indoor air pollutants including chlorobenzene, 

styrene, m-xylene, formaldehyde, toluene, terpenes, and aldehydes. Research has shown that 

exposure of TNF-α stimulated A549 cells (Static/20 h) to chlorobenzene, styrene or m-

xylene (within the indoor relevant concentration range 1–25,000 mg/m3) increased MCP-1 

production while higher concentrations increased IL-8 production (Fischader et al., 2008). 

Mixtures of the three VOCs produced similar results. In addition to alternations in IL-8 and 

MCP-1 production, increased IL-13 levels were observed when supernatants of 

chlorobenzene exposed A549 cells (Static/20 h) were incubated with human peripheral 

blood mononuclear cells (Lehmann et al., 2008). Expression of cellular markers for 

oxidative stress, such as HO-1, GSTP1, SOD-1, prostaglandin-PTGS2 and DUSP1, were 

also found to be elevated in the presence of chlorobenzene (102–104 mg/m3 for 24 h) along 

with intracellular ROS. However, in the presence of antioxidants chlorobenzene-induced 

alterations were suppressed (Feltens et al., 2010). Exposure of A549 cells (0.2 ppmv for 1 h/

Cultex®) to toluene and benzene, but not formaldehyde, increased IL-8 production and 

cytotoxicity following exposure. The ratio of reduced to oxidized glutathione was increased 

for benzene treated cells and decreased for formaldehyde treated cells (Pariselli et al., 2009). 

However, cells pre-stimulated with TNF-α prior to formaldehyde (50 mg/m3 for 30 min) 

exposure, resulted in enhanced IL-8 expression (Persoz et al., 2010). Gminski et al., 2010 

demonstrated that the aldehydes 2-heptenal and 2-octenal (main VOC constituents emitted 

from pine wood) caused genotoxic effects in A549 cells following exposure (15–65 ppm; 
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Vitrocell® for 1 h) to concentrations exceeding 100 mg/m3 and 40 mg/m3, respectively 

(Gminski et al., 2010). In vitro investigations into the specific health effects associated with 

exposure to secondary pollutants in the indoor environment are limited. One study 

conducted by Anderson et al. (2010) demonstrated that exposure of A549 cells (Vitrocell® 

for 4 h) to structurally similar terpene ozonolysis reaction products (dicarbonyl compounds) 

resulted in an increased pro-inflammatory response suggesting the potential for toxicity of 

secondary pollutants. The differences in exposure techniques and endpoints among the 

above mentioned studies emphasize the need for the standardization of this type of model.

The ozone-initiated reaction of limonene, an abundant VOC that provides a citrus smell to 

many cleaning supplies and personal care products, is a well characterized chemistry model 

for the identification of secondary pollutants and the evaluation of indoor air mixtures. 

While in vivo studies suggest the potential for more severe health effects following exposure 

to ozone/limonene reaction products compared to the parent compounds (Wolkoff et al., 

2012), currently no in vitro work has been conducted. Therefore, this study used the 

prototypical indoor air reaction of limonene + ozone to begin to characterize if secondary 

products are more toxic than their parent compounds and to emphasize the importance of 

method development and validation for these types of in vitro exposure models.

2. Experimental methods

2.1. Teflon chamber preparation

Teflon chambers (FEP 500, American Durafilm, Hollston, MA) were constructed and filled 

with treated air (described below) to facilitate cell exposure to gas-phase chemicals via the 

Vitrocell® apparatus. Compressed air from the National Institute for Occupational Safety 

and Health (NIOSH) facility was passed through anhydrous CaSO4 and molecular sieves 

(Drierite, Xenia, OH) to remove both moisture and organic contaminants. The resultant dry 

air (less than 5% relative humidity) was humidified to 50% relative humidity to simulate 

average indoor environment conditions. R(+)-Limonene (99% purity) was injected into a 

50% relative humidity air stream through a heated ¼ inch stainless steel tee into the 60 liter 

Teflon chambers. Lower target concentrations (500 ppb (1.2 × 1013 molecule cm−3)) of 

limonene in both limonene and limonene/ozone chambers were used for the MucilAir™ 

exposures while higher concentrations of approximately 20 ppm (5 × 1014 molecule cm−3) 

was used for A549 exposures. For the reaction product experiments, ozone was produced by 

photolyzing air with a mercury pen lamp (Jelight, Irvine, CA) in a separate Teflon chamber. 

Ozone concentrations were measured with a UV photometric ozone analyzer (model 49C or 

49i, Thermo Fisher Scientific, Inc., Waltham, MA). Ozone concentrations of either 100 ppb 

(2.5 × 1012 molecule cm−3 for MucilAir™ exposure) or 4 ppm (1 × 1014 molecule cm−3 for 

A549 exposure) were achieved by transferring large volumes (2 liters) from the separate 

high concentration (~120 ppm) ozone chamber using a gas-tight syringe or an additional 

smaller Teflon chamber. Ozone was injected into the respective Teflon chamber containing 

~500 ppb (1.2 × 1013 molecule cm−3) or ~20 ppm (5 × 1014 molecule cm−3) limonene 15 to 

30 min prior to the Vitrocell® exposure. The high concentrations of ozone (4 ppm) and 

limonene (20 ppm) were based on preliminary concentration range finding studies where the 

highest dose that did not induce cellular toxicity was selected for the initial hazard 
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identification studies. In an attempt to mimic in door environments, lower realistic 

concentrations of ozone (100 ppb) and limonene (500 ppm) were selected (Weschler, 2004) 

for the subsequent studies. Previous gas-phase VOC experiments indicated the sample 

preparation method above provides multi-hour concentration stability (Forester and Wells, 

2009).

2.2. Chemical characterization

Sampling for monitoring chamber contents was performed using a 65 μm 

polydimethylsiloxane/divinylbenzene (PDMS/DVB) solid phase micro-extraction (SPME) 

fiber (Supelco, Milwaukee, WI) assembly which was inserted into a 6.4-mm Swagelok 

(Solon, OH) fitting attached to the Teflon®-film chambers (described above). The chamber 

contents were sampled for 5 min then the SPME was inserted through a Merlin Microseal 

(Half Moon Bay, CA) and into the heated injector of an Agilent (Wilmington, DE) 6890 gas 

chromatograph with a 5975 mass selective detector (GC/MS) and Agilent ChemStation 

software. Compound separation was achieved by a J&W Scientific (Folsom, CA) HP-5MS 

(0.25 mm i.d., 30-m long, 0.25 μm film thickness) column and the following GC oven 

parameters: injection port was set to 250 °C, and oven temperature began at 40 °C for 2 min 

and was ramped 20 °C min−1 to 130 °C then ramped 40 °C min−1 to 240 °C and held for 2 

min.

2.3. A549 cell culture

Human alveolar epithelial cells (A549) were purchased from American Type Culture 

Collection (ATCC No.CCL-185). For each set of experiments cell culture was initiated from 

an A549 stock (1 × 106 cells/ml) prepared from early passages. Cells were incubated at 37 

°C with 5% CO2 in F12 K medium (Kaighn’s Modification of Ham’s F-12 with L-

Glutamine, ATCC, VA, USA) supplemented with 10% heat inactivated fetal bovine serum 

(FBS) and 0.05 mg/ml of Gentamycin. Cells were propagated in sterile and vented 75 cm2 

cell culture flasks until desired number of cells was reached then harvested, counted and 

seeded on Costar 24 mm (0.4 μm) transwell inserts and placed in 6-well tissue culture 

treated plates. To determine the optimal growth of A549 cells on inserts, a range of 1.25 × 

105 to 5 × 105 cells per insert and incubation times of 24 to 48 h were tested. During this 

incubation period complete culture medium (with 10% FBS) was added to the apical (1.5 

ml) and basolateral (2.5 ml) tissue surfaces. Twenty-four hours prior to exposure the 

complete culture medium was removed and replaced with serum-free medium to 

synchronize the cells. Recombinant human TNF-α (Invivogen, San Diego, CA) at a final 

concentration of 2 ng/ml was added to serum-free medium 24 h prior to exposure for pre-

stimulation/activation of cells prior to exposure in select experiments. Inserts containing 

unexposed cells (n = 3) were included in every experiment to evaluate cellular integrity. 

These controls were treated exactly the same as the experimental cells except they remained 

in the incubator while the other cells were exposed in the Vitrocell® chambers.

2.4. Mucilair™ tissue culture

MucilAir™ tissue samples are 3D models of highly differential human airway epithelium 

consisting of primary human cells isolated from the nasal cavity, the trachea and the 
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bronchus. The manufacturer claims that these samples are functional for more than 1 year 

and can therefore be used for long term and/or repeated dose exposures. Commercially 

available transwell inserts with MucilAir™ epithelium were purchased from Epithelix 

(Geneva, Switzerland). Upon arrival inserts were transferred into 24-well tissue culture 

plates containing 0.8 ml of serum free MucilAir™ Culture Medium (Geneva, Switzerland) 

which did not exceed the air/liquid interface. Cultures were maintained at 37 °C in a 

humidified 5% CO2 incubator. Media were changed every 2–3 days. Unexposed inserts (n = 

3) were included in the 28-day exposure experiment to evaluate cellular integrity. These 

controls were treated exactly the same as the experimental cells except they remained in the 

incubator while the other inserts were exposed in the Vitrocell® chambers.

2.5. Vitrocell exposures

For A549 cells, immediately before exposures culture medium was completely removed 

from the apical side of the inserts (n = 3), cells were washed twice with sterile phosphate 

buffered saline then transferred into the Vitrocell® PT-CF exposure system (Vitrocell, 

Waldkirch, Germany). For the exposures of MucilAir™ tissue, the inserts (n = 3) were 

transferred directly into the Vitrocell® PT-CF exposure system. Once a week, a washing 

step (three times within 1 h using MucilAir™ culture medium) was performed to remove 

accumulated mucus produced by fully differentiated and functional MucilAir™ tissue. 

Exposures were conducted as previously described (Anderson et al., 2010). In brief, two 

separate exposure modules, each accommodating three inserts were used for parallel 

exposures to control (n = 3) and test atmospheres (n = 3). During exposure cells were 

immersed in serum-free medium on the basal surface, allowing cells to be nourished from 

the bottom while being exposed to gas on air/liquid interface from the top. To minimize 

mechanical stress and maintain cell viability, the test atmosphere was delivered via trumpets 

raised 0.5 cm above the cell layer at an optimal constant air flow of 3 ml/minute (A549 

cells) or 2 ml/minute (MucilAir). A single exposure (1–4 h) was tested for A549 cells. 

MucilAir™ inserts were exposed for 1 h per day, 5 days a week for a total of 4 weeks. 

Immediately after the exposure, inserts were transferred to regular 6-well (A549) or 24-well 

(MucilAir™) plates. Complete medium with 10% FBS (A549) or MucilAir™ Culture 

Medium was added on both (apical and basolateral) or basolateral side respectively. Cells 

were allowed to recover in a 37 °C, 5% CO2 incubator. Culture supernatants were collected 

at 10–12 h post-exposure and then again at 24 h (A549) or at 72 h after the last exposure of 

each week for 4 weeks (MucilAir™). Supernatants were stored at −20 °C for subsequent 

analysis. Following exposure, cells and tissues were analyzed for cell proliferation and 

supernatants were evaluated for cytokine production.

2.6. XTT proliferation assay

Cell proliferation of A549 cells and MucilAir™ tissue samples was determined using Cell 

Proliferation Kit II–XTT, (Roche Diagnostics, Mannheim, Germany) according to the 

manufacturer’s protocol with slight modifications. In brief, in order to minimize the loss of 

cells during the trypsinization process the reaction was performed directly on the transwell 

inserts in a 6-well (A549) or a 24-well plate (MucilAir™). For A549 cells 24 h post exposure 

both top and bottom culture supernatants were removed. Cells were washed once with F-12 

K Medium supplemented with 10% of heat inactivated fetal bovine serum. Fresh culture 
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medium (1 ml) pre warmed to 37 °C was added to each insert. For MucilAir™ samples basal 

supernatants were removed after the last exposure (at the end of 4 weeks). Inserts were 

rinsed once with MucilAir™ Culture Medium and 125 μl of fresh warm medium was added 

on top of each insert. Reaction reagents were thawed immediately prior to use. A XTT 

labeling mixture was prepared by mixing 5 ml of XTT labeling reagent and 100 μl of 

electron-coupling reagent. The mixture was then added to each insert (0.5 ml per A549 or 

125 μl per MucilAir™ insert) to obtain a final concentration of XTT 0.3 mg/ml. To ensure 

even distribution of the dye on top of the inserts, the plate was swirled in a circular motion 

and incubated for 2 h in a humidified atmosphere (37 °C, 5% CO2 incubator). Following the 

2 h incubation period, 100 μl aliquots from each sample were transferred into a 96-well, flat 

bottom plate and the absorbance was determined using a Spectramax Vmax plate reader 

(Molecular Devices, Sunnyvale, CA) at 492 nm.

2.7. Cytokine detection

Levels of IL-8 and MCP-1 were measured in the combined apical and basal culture 

supernatants of A549 cells (10–24 h post exposure) and IL-8, IL-6, MCP-1, and 

granulocyte–macrophage colony-stimulating factor (GM-CSF) were measured from basal 

supernatants of MucilAir™ tissues collected post exposure using commercially available 

ELISA kits (OptEIA™, BD Biosciences, San Jose, CA) according to the manufacturer’s 

instructions.

2.8. Statistics

To determine statistically significant differences in cell proliferation or concentrations of 

inflammatory proteins, a 2-tailed unpaired t-test was used to compare clean air or limonene 

exposed to limonene or limonene + ozone exposed samples for each specified time point. 

All data is based on three independent biological replicates (n = 3) per exposure group. 

Cytokine levels are based on the mean of triplicate samples from each biological replicate at 

each time point. Analysis of cell proliferation is based on the mean for each biological 

replicate sample for each treatment group. Linear trend analysis was performed to determine 

if the test articles had exposure duration-related effects for the specified endpoints. 

Significant differences between control and experimental groups are designated with **(p ≤ 

0.01) or *(p ≤ 0.05).

3. Results

3.1. Generation of limonene and ozone reaction products

Fig. 1 shows the overlaid chromatograms following SPME sampling of the chamber 

contents connected to the Vitrocell® apparatus used for the exposures in the above 

mentioned studies. The dashed lines show the limonene peak before and after addition of 

ozone in the limonene + ozone chamber while the solid line (shifted by +0.05 min) shows 

the limonene peak for the limonene alone chamber. Because the peak areas are proportional 

to concentration it can be observed that prior to ozone addition the two chambers contained 

the same limonene concentration. After addition of ozone to the limonene + ozone chamber, 

the decrease in the limonene chromatographic peak area demonstrates the reaction of 
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limonene with ozone. The ozone is consumed completely by the limonene + ozone reaction 

because there is significantly more limonene than ozone (data not shown).

3.2. A 4 h exposure to limonene and ozone reaction products augments pro inflammatory 
cytokine production in A549 cells

To determine if exposure to indoor air reaction products alters the pro inflammatory 

response, pulmonary epithelial cells were exposed to clean air, ozone (4 ppm), limonene (20 

ppm), or limonene (20 ppm) + ozone (4 ppm) (Fig. 2) for 4 h. Statistically significant 

increases in IL-8 (12 h post-exposure) and MCP-1 (12 and 24 h post-exposure) were 

observed following exposure to limonene when compared to clean air (Fig. 2A and B). No 

significant differences in cytokine production were observed following exposure to ozone 

when compared to clean air (Fig. 2C and D) which suggests that ozone alone does not 

influence the inflammatory cytokine response. However, a significant increase in IL-8 

cytokine production was observed following exposure to limonene + ozone (12 h post-

exposure) when compared to limonene alone (Fig. 2E). Although not statistically significant, 

a modest increase in cytokine production was observed at 24 h post-exposure. There were no 

statistically significant increases for MCP-1 cytokine production at 12 or 24 h post-exposure 

(Fig. 2F). The data presented are the best representation of three separate studies. Literature 

searches have identified that exposure times vary for research utilizing similar types of 

exposure models. To mimic a realistic indoor air environment an extended exposure 

duration is desired. To determine if exposure duration influences cell proliferation, A549 

cells were exposed to clean air for durations of one and 4 h (Fig. 3). A statistically 

significant reduction in the metabolic state of the cells, indicating decreased proliferation, 

was observed following a 4 h exposure to clean air when compared to unexposed controls. 

This result was not observed following the 1 h exposure to clean air.

3.3. A 1 h exposure to limonene and ozone reaction products augments pro inflammatory 
cytokine production in unstimulated A549 cells

Due to the potential toxicity induced by exposure duration, subsequent exposures were 

reduced to 1 h. To determine if a 1 h exposure to indoor air reaction products alters cell 

proliferation or the pro inflammatory responses, pulmonary epithelial cells were exposed to 

clean air, limonene (20 ppm), or limonene (20 ppm) + ozone (4 ppm). Consistent with the 4 

h exposure duration (Fig. 2), exposure to limonene resulted in significant increases in IL-8 

and MCP-1 at 24 h post exposure when compared to the clean air control (Fig. 4A and B). 

Exposure to limonene + ozone resulted in a decreased production of MCP-1 at the 10 and 24 

h post-exposure time points when compared to limonene (Fig. 3D). No change was observed 

in IL-8 production. No changes in cell viability were observed following exposure to 

limonene (Fig. 4E) when compared to the clean air control. However, a statistically 

significant decrease in cellular metabolism/proliferation was observed following limonene + 

ozone exposure (Fig. 4F). The data presented are the best representation of three separate 

studies. Similar exposure models described in the literature have elected to stimulate cells 

prior to exposure. Therefore, the effect of pre stimulation on cellular proliferation and pro 

inflammatory cytokine production was explored following exposure to limonene, or 

limonene + ozone (Fig. 5). In comparison to unstimulated cells, no statistically significant 

changes in cell proliferation or cytokine production were observed. Lower, exposure 
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concentrations of limonene and ozone were used to explore the influence of exposure 

concentration on the pro inflammatory and proliferative responses of A549 cells. Pulmonary 

epithelial cells were exposed to clean air, limonene (500 ppb), or limonene (500 ppb) + 

ozone (100 ppb). In contrast to previous studies that used higher concentrations of limonene 

and ozone (Fig. 2), no changes in proliferation or cytokine production were observed 

following exposure (Fig. 6).

3.4. Repeated dose exposure to limonene and ozone reaction products augments pro 
inflammatory cytokine production in MucilAir™ tissue

MucilAir™ tissue samples were tested in the Vitrocell® system to evaluate the effects of 

repeated dose exposure (1 h per day/5 days per week/4 weeks) on pro inflammatory and 

proliferative responses. MucilAir™ samples were exposed to limonene (500 ppb), or 

limonene (500 ppb) + ozone (100 ppb). Increases (Linear Trend Test p < 0.05) in cytokine 

production were observed for limonene (IL-6) and limonene + ozone (IL-6 and IL-8) over 

the 4 week exposure period. Statistically significant increases in IL-8 and IL-6 cytokine 

production were observed for the limonene + ozone exposure group when compared to the 

limonene exposure group at week three (Fig. 7A and B). Although at week three it appears 

there is an increase in GM-CSF production for limonene + ozone compared to limonene, it 

was not statistically significant. Similar to the A549 exposures, statistically significant 

decreases in MCP-1 were observed for limonene + ozone when compared to limonene at 

weeks one and two (Fig. 7C). There were no modulations in cytokine levels [IL-6 (70 ± 8 

pg/ml), IL-8 (15 ± 1 pg/ml), MCP-1 (837 ± 263 pg/ml), and GM-CSF (59 ± 9 pg/ml)] at 1 

week for limonene compared to unexposed tissues. No differences in metabolic activity for 

the limonene or limonene + ozone exposure groups compared to the unexposed tissues were 

observed following the 4 week exposure period (Fig. 7E).

4. Discussion

The studies described in this manuscript have utilized an in vitro exposure system to 

evaluate the toxicity associated with exposure to secondary pollutants generated from the 

reaction of limonene and ozone using both an isolated epithelial cell line (A549 cells) and 

highly differentiated epithelial tissue (MucilAir™). The data suggest that exposure to either 

the parent compound (limonene) or secondary pollutants (reactions of limonene + ozone) 

can induce alternations in inflammatory responses in A549 cells and MucilAir™ tissue. At 

higher concentrations exposure to secondary pollutants resulted in greater toxicity as 

observed in a decrease in cell proliferation in A549 cells. In most cases where alterations in 

MCP-1, IL-8 or IL-6 cytokine expression occurred in either A549 or MucilAir™ tissue, a 

greater response was observed following exposure to limonene + ozone as compared to 

limonene alone. These data are consistent with results from animal studies which have 

demonstrated increased respiratory distress in animals exposed to reaction products 

compared to parent compounds. Wolkoff et al. (2012) showed that when mice were exposed 

to air, limonene (52 ppm/289 mg/m3); ozone (0.1 ppm/0.2 mg/m3); or a reaction mixture of 

limonene (52 ± 8 ppm) and ozone (0.5, 2.5 and 3.9 ppm) 1 h per day for 10 consecutive days 

increases in sensory irritation and airflow limitations and a concentration-dependent 

decrease in respiratory rate developed for the limonene + ozone groups compared to the 
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controls. However, in contrast to the data presented here where there was a trend toward an 

increase in inflammatory cytokine expression over the 4 week exposure period with 

MucilAir™ tissue, the severity of the effects observed in the animals did not change with 

increasing number of exposures. Other studies have demonstrated significant increases in 

upper airway irritation and airflow limitations in mice exposed for 1 h to reaction products 

compared to mice exposed to the reactants separately (Rohr et al., 2003; Wilkins et al., 

2003). These results support the hypothesis that reaction products or secondary pollutants 

may yield health effects that are more severe than those resulting from exposure to the 

parent compounds raising the concern that exposure assessments may be overlooking the 

most toxic components of indoor air contaminants.

In vitro models play an important role in understanding the biological effects of indoor air 

pollutants, however standardization of these models will be important in order to interpret 

data and compare results between laboratories. Culture conditions such as media, number of 

cells used and growth duration can contribute to variability between studies and may affect 

result outcomes (Anderson et al., 2010; Feltens et al., 2010; Fischader et al., 2008; Gminski 

et al., 2010). Heterogeneity in culture conditions can result in different growth 

characteristics and even phenotypes. For example, in these studies it was determined that the 

number of cells seeded on the insert and the growth duration prior to exposure can affect 

cytokine production. Lower cell concentration (250,000) and an increased growth period (48 

h following addition to insert) were identified to produce the greatest cytokine production 

and provide optimal conditions for the detection of cytokine modulation. This is 

demonstrated in Figs. 2 and 4 where basal levels of cytokine production were much higher 

in Fig. 4A and B (48 h) compared to Figs. 2A and B (24 h) for clean air and limonene.

It is critical to identify the conditions that will be sensitive enough to predict alterations, yet 

robust enough to be applied to various systems and across chemicals because the sample 

requirements often limit analysis to a single endpoint. Based on their relationship to human 

disease there are several endpoints which have been chosen for analysis. The airway 

epithelium is a complex physicochemical barrier that plays a pivotal role in host defense and 

is a rich source of modulatory compounds including cytokines which have been shown to 

play an import role in the etiology of airway disease (Mills et al., 1999). The development of 

specific epithelial cell culture techniques has enabled investigators to examine differences 

that exist in the airway between health and disease states. Soluble inflammatory cytokines 

such as, IL-6, IL-8 and MCP-1 are often described in the literature as markers for the 

analysis of adverse outcomes induced by chemical exposure in cell lines such as A549; these 

can be collected directly from the supernatant and analyzed easily using methods such as 

ELISA or flow cytometry (Fischader et al., 2008; Persoz et al., 2010). The choice of these 

markers is supported by studies using primary cultures of human nasal epithelial cells from 

atopic individual with and without rhinitis (Calderon et al., 1997). In general, nasal epithelial 

cells from atopic individuals release significantly greater amounts of MCP-1, IL-8, TNF-α, 

and GM-CSF compared to cells collected from non-atopic, non-rhinitic individuals. 

Additionally, IL-8 levels have been shown to be increased in asthmatics and MCP-1 has 

been implicated in the pathogenesis of diseases characterized by monocytic infiltrates 

(Wood et al., 2012; Bafadhel et al., 2012). However, there is not a consensus in the literature 
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with regards to the need or impact of cell stimulation prior to chemical exposure in the 

evaluation of cytokine modulation. For example, Persoz et al. (2010) found that pre-

stimulation was required to detect changes in IL-8 production following formaldehyde 

exposure. In the studies presented here contradictory results were obtained when TNF-α was 

used for pre-stimulation in the A549 studies. Although following exposure to limonene 

reaction products cytokine levels in TNF-α stimulated cells were increased for both IL-8 and 

MCP-1 compared to unstimulated cultures, there was no longer a statistically significant 

increase in cytokine production between exposure groups and controls as was seen with 

unstimulated cells (Figs. 4 and 5). This points out the need for optimization such that there is 

room on the dose response curve to observe both up and down regulatory events.

One important shortcoming of more primitive in vitro methods is the lack of complexity. 

Cells in culture represent very simplified living systems; they do not possess the complexity 

of integrated functioning tissues. The use of differentiated tissue such as MucilAir™ helps to 

overcome some of these issues. MucilAir™ tissues are made of primary human cells isolated 

from the nasal cavity, the trachea and the bronchus to mimics the human respiratory 

epithelium. They contain basal, goblet, ciliated cells, and mucus and have features such as 

cilia beating, tight junctions, active ion transport, metabolic activity/detoxification 

(CYP450), and cytokine/chemokine/metalloproteinase release. Due to growth requirements, 

cell lines such as A549 are often limited to a single acute exposure and high doses 

representing cumulative exposure are frequently tested. The MucilAir™ model allows for 

repeated exposures and the studies presented here demonstrate the use of this more complex 

in vitro model to evaluate repeated exposures testing chemical concentrations closely related 

to indoor environments for up to 4 weeks. Due to growth requirements, cell lines are often 

limited to a single exposure. In these A549 cells studies, a high dose single exposure 

induced a similar pattern of cytokine modulation as seen in the lower dose MucilAir™ 

studies.

In summary, these studies suggest that secondary reaction products may be a significant 

contributor to adverse health effects associated with contaminated indoor air exposure. A 

combined approach using representative cell cultures as a screening tool, followed when 

appropriate, with more complex tissues including engineered tissues or lung slices may 

provide a valuable tool in investigating the role of indoor contaminants in respiratory 

disease. Further development, standardization, and validation of these in vitro test methods 

could play a significant role in understanding the cellular, biochemical, and molecular 

mechanisms underlying the pulmonary toxicity resulting from exposure to indoor 

environment.

Acknowledgments

This work was supported in part by the Inter-Agency Agreement NIEHS Y1-ES0001-06.

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the 
National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention.

Anderson et al. Page 11

Toxicol In Vitro. Author manuscript; available in PMC 2015 December 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Abbreviations

A549 alveolar epithelia cells

FBS fetal bovine serum

ROS reactive oxygen species

GM-CSF granulocyte-macrophage colony-stimulating factor

GSH glutathione

TNF-α tumor necrosis factor alpha

VOC volatile organic compounds

IL-8 interleukin 8

IL-6 interleukin 6

MCP-1 monocyte chemoattractant protein 1
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Fig. 1. 
GC/MS chromatogram of SPME sampled limonene and limonene/ozone chambers. Peak 

areas are proportional to concentration and all peaks are on the same y-axis scale. Solid line 

is the chromatographic peak of limonene only (20 ppm) chamber (shifted by +0.05 min for 

clarity). Gray dashed line is the chromatographic peak of limonene (20 ppm) in limonene/

ozone chamber prior to addition of ozone while black dashed line is limonene peak in 

limonene/ozone chamber after ozone (4 ppm) addition.
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Fig. 2. 
The effect of limonene and limonene + ozone reaction products on A549 cells following a 4 

h exposure. A549 cells (250,000) were incubated for 24 h on transwell inserts prior to 

exposure. Following exposure, cells were evaluated for IL-8 and MCP-1 protein production 

at 12 and 24 h post-exposure. Comparisons were made for (A and B) clean air vs. limonene 

(20 ppm), (C and D) clean air vs. ozone (4 ppm) and (E and F) limonene (20 ppm) vs. 

limonene (20 ppm)/ozone (4 ppm). Bars represent the mean ± SE from three independent 

biological replicates per exposure group. Significant differences are designated with *p < 

0.05.
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Fig. 3. 
The effect of exposure duration on proliferation of A549 cells. A549 cells (250,000) were 

incubated for 48 h on transwell insert prior to exposure. Unexposed cells remained in 

incubator (37 °C, 5% CO2) while clean air was delivered to exposed cells for 1 or 4 h. Cell 

proliferation was evaluation 24 h post exposure. Bars represent the mean ± SE from three 

independent biological replicates per exposure group. Significant differences are designated 

with **p < 0.01.
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Fig. 4. 
The effect of limonene and limonene + ozone reaction products on A549 cells following a 1 

h exposure. A549 cells (250,000) were incubated for 48 h on transwell insert prior to 

exposure. Following exposure, cells were evaluated for IL-8 (A and B) and MCP-1 (C and 

D) protein production at 10 and 24 h post-exposure and cell proliferation (E and F) at 24 h 

post exposure. Comparisons were made for clean air vs. limonene (20 ppm) and limonene 

(20 ppm) vs. limonene (20 ppm)/ozone (4 ppm). Bars represent the mean ± SE from 3 

independent biological replicates per exposure group. Significant differences are designated 

with **p < 0.01 or *p < 0.05.
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Fig. 5. 
The effect of limonene and limonene + ozone reaction products on stimulated A549 cells 

following a 1 h exposure. A549 cells (250,000) were incubated for 48 h on transwell insert 

prior to exposure. Following exposure, TNF-α stimulated cells (2 ng/ml) were evaluated for 

IL-8 (A) and MCP-1 (B) protein production at 10 and 24 h postexposure and cell 

proliferation (C) at 24 h post exposure. Comparisons were made between limonene (20 

ppm) vs. limonene (20 ppm)/ozone (4 ppm). Bars represent the mean ± SE from three 

independent biological replicates per exposure group.
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Fig. 6. 
The effect of exposure concentration on A549 cells following a 1 h exposure. A549 cells 

(250,000) were incubated for 48 h on transwell insert prior to exposure. Following exposure, 

cells were evaluated for IL-8 (A and B) and MCP-1 (C and D) protein production at 10 and 

24 h post-exposure and cell proliferation (E and F) at 24 h post exposure. Comparisons were 

made for clean air vs. limonene (500 ppb) and limonene (500 ppb) vs. limonene (500 ppb)/

ozone (100 ppb). Bars represent the mean ± SE from three independent biological replicates 

per exposure group. Significant differences are designated with **p < 0.01 or *p < 0.05.
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Fig. 7. 
The effect of limonene and limonene + ozone reaction products on MucilAir™ tissue 

following a repeated dose exposure. MucilAir™ tissue was exposed to limonene (500 ppb) 

vs. limonene (500 ppb)/ozone (100 ppb) for 1 h per day/5 days per week/4 weeks. 72 h 

following the final weekly exposure, supernatant was evaluated for IL-8 (A), IL-6 (B), 

MCP-1 (C), and GM-CSF (D) protein production. Cell proliferation was evaluated 72 h 

following the final experimental exposure (E). Comparisons were made for unexposed vs. 

limonene (500 ppb) and limonene (500 ppb) vs. limonene (500 ppb)/ozone (100 ppb). Basal 

cytokine levels for unexposed tissues are as follows: IL-6 (70 ± 8 pg/ml), IL-8 (15 ± 1 pg/

ml), MCP-1 (837 ± 263 pg/ml), and GM-CSF (59 ± 9 pg/ml). Bars represent the mean ± SE 

from three independent biological replicates per exposure group. Significant differences are 

designated with *(p < 0.05).
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